Related Questions with Solutions

Questions	
uetion: 01	
$y(t)$ is a solution of $(1+t)rac{dy}{dt}-ty=1$ and $y(0)=-1$, then $y(1)$ is equ	al to
$\frac{-1}{2}$	
$\frac{1}{2}$	
.1 1	

Solutions

Solution: 01

The given differential equation is

$$\frac{dy}{dt} - \frac{t}{1+t}y = \frac{1}{1+t}, \text{ which is a linear differential equation}$$
I.F. $= e^{-\int \frac{t}{1+t}dt} = e^{-\int (1-\frac{1}{1+t})dt} = e^{-(t-\log(1+t))} = e^{-t} \cdot e^{\log(1+t)} = (1+t)e^{-t}$
 \therefore Solution is $y \cdot e^{-t}(1+t) = \int \frac{1}{(1+t)}e^{-t}(1+t)dt + C$
 $\Rightarrow \quad y \cdot e^{-t}(1+t) = -e^{-t} + C$
 $\Rightarrow \quad y = -\frac{1}{1+t} + \frac{Ce^{t}}{1+t}$
Given that $y[0] = -1$
 $\Rightarrow -1 = -1 + C \Rightarrow C = 0$
 $\therefore \quad y = -\frac{1}{1+t}$
 $\therefore \quad y(1) = -\frac{1}{1+1} = -1/2$

Correct Options

Answer:01 Correct Options: A